Search results for "invariant manifold"
showing 10 items of 11 documents
On invariant manifolds of saddle points for 3D multistable models
2017
In dynamical systems a particular solution is completely determined by the parameters considered and the initial conditions. Indeed, when the model shows a multistability, starting from different initial state, the trajectories can evolve towards different attractors. The invariant manifolds of the saddle points separate the vector field into the basins of attraction of different stable equilibria. The aim of this work is the reconstruction of these separation surfaces in order to know in advance the geometry of the basins. In this paper three-dimensional models with three or more stable fixed points is investigated. To this purpose a procedure for the detection of the scattered data lying …
Conjugate unstable manifolds and their underlying geometrized Markov partitions
2000
Abstract Conjugate unstable manifolds of saturated hyperbolic sets of Smale diffeomorphisms are characterized in terms of the combinatorics of their geometrized Markov partitions. As a consequence, the relationship between the local and the global point of view is also made explicit.
On the Rational Homogeneous Manifold Structure of the Similarity Orbits of Jordan Elements in Operator Algebras
1991
Considering a topological algebra B with unit e, an open group of invertible elements B −1 and continuous inversion (e. g. B = Banach algebra, B = C∞(Ω, M n (ℂ)) (Ω smooth manifold), B = special algebras of pseudo-differential operators), we are going to define the set of Jordan elements J ⊂ B (such that J = Set of Jordan operators if B = L(H), H Hilbert space) and to construct rational local cross sections for the operation mapping $$ {B^{ - 1}} \mathrel\backepsilon g \mapsto gJ{g^{ - 1}} $$ of B −1 on the similarity orbit S(J):= {gJg −1: g Є B −1}, J Є J.
On the index form of a geodesic in a pseudoriemannian almost-product manifold
1986
Detecting tri‐stability of 3D models with complex attractors via meshfree reconstruction of invariant manifolds of saddle points
2018
In mathematical modeling it is often required the analysis of the vector field topology in order to predict the evolution of the variables involved. When a dynamical system is multi-stable the trajectories approach different stable states, depending on the initialmconditions. The aim of this work is the detection of the invariant manifolds of thesaddle points to analyze the boundaries of the basins of attraction. Once that a sufficient number of separatrix points is found a Moving Least Squares meshfree method is involved to reconstruct the separatrix manifolds. Numerical results are presented to assess the method referring to tri-stable models with complex attractors such as limit cycles o…
Nodal Solutions for Supercritical Laplace Equations
2015
In this paper we study radial solutions for the following equation $$\Delta u(x)+f (u(x), |x|) = 0,$$ where $${x \in {\mathbb{R}^{n}}}$$ , n > 2, f is subcritical for r small and u large and supercritical for r large and u small, with respect to the Sobolev critical exponent $${2^{*} = \frac{2n}{n-2}}$$ . The solutions are classified and characterized by their asymptotic behaviour and nodal properties. In an appropriate super-linear setting, we give an asymptotic condition sufficient to guarantee the existence of at least one ground state with fast decay with exactly j zeroes for any j ≥ 0. Under the same assumptions, we also find uncountably many ground states with slow decay, singular gro…
Some topological invariants for three-dimensional flows
2001
We deal here with vector fields on three manifolds. For a system with a homoclinic orbit to a saddle-focus point, we show that the imaginary part of the complex eigenvalues is a conjugacy invariant. We show also that the ratio of the real part of the complex eigenvalue over the real one is invariant under topological equivalence. For a system with two saddle-focus points and an orbit connecting the one-dimensional invariant manifold of those points, we compute a conjugacy invariant related to the eigenvalues of the vector field at the singularities. (c) 2001 American Institute of Physics.
Multiplicity of ground states for the scalar curvature equation
2019
We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…
Persistence of Asteroids After a Close Encounter
1999
We present here a first approximation to the planar circular restricted 2 + 2 problem. In this four body problem, we consider that the two secondaries do not affect the primaries but they do influence each other. It can be seen as a model for near collision orbits of two asteroids if the primaries are the Sun and Jupiter ([3], [5]). In particular, we analyze the values of the Jacobi constant of the two asteroids before and after the close approach.
Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry
2022
AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…